Question Number	Answer	Mark
1 (a)	Use of $R = V/I$ (for current) (1)	
	Use of sum of a m f - sum of a d a	
	Use of sum of e.m.f. = sum of p.d.s Or use of $\mathcal{E} = V + Ir$ (1)	
	Or use of $\mathcal{E} = V + Ir$ (1)	
	$r = 100\ 000\ \Omega \text{ or } 100\ k\Omega \text{ or } 1 \times 10^5\ \Omega $ (1)	
	(Accept valid alternative methods based on potential divider)	
	Example of calculation	
	$\overline{I = 0.018}$ V / 4700 $\Omega = 3.8 \times 10^{-6}$ A	
	$0.4 \text{ V} = 0.018 \text{ V} + (3.8 \times 10^{-6} \text{ A} \times r)$	
	$r = 100\ 000\ \Omega$	3
1 (b)	Use of power = radiation flux \times area (1)	
	Use of an electrical power equation (1)	
	Use of efficiency equation (1)	
	Efficiency = 12% (1)	
	(Full ecf for current from (a))	
	Example of calculation	
	power = 1.5×10^{-3} W m ⁻² × 3.9×10^{-4} m ² = 5.85×10^{-7} W	
	power = $IV = 3.8 \times 10^{-6} \text{ A} \times 0.018 \text{ V} = 6.84 \times 10^{-8} \text{ W}$	
L	Efficiency = 6.84×10^{-8} W / 5.85×10^{-7} W = 0.12 OR 12 %	4
	Total for question	7

Question Number	Answer		Mark
2(a)	The (maximum) length is (directly) proportional to the area	(1)	1
2(b)(i)	Use of $\rho l/A = R$ $R = 1.34 (\Omega)$	(1) (1)	2
	$\frac{\text{Example of calculation}}{R = 1.68 \times 10^{-8} \Omega \text{ m} \times 80 \text{ m} \div 1.0 \times 10^{-6} \text{ m}^2}$ $R = 1.34 \Omega$		
2(b)(ii)	Use of $P = I^2 R$ P = 160 W allow ecf from (i)	(1) (1)	2
	$\frac{\text{Example of calculation}}{P = (11 \text{ A})^2 \times 1.34 \Omega}$ $P = 162 \text{ W} (157 \text{ W if they use } 1.3 \Omega)$		
2(b)(iii)	Use of $V = IR$ Or use of $P = VI$ Or use of $P = V^2/R$ V = 15 V allow ecf from (i) and/or (ii)	(1) (1)	2
	$\frac{\text{Example of calculation}}{V = 11 \text{ A} \times 1.34 \Omega} = 14.7 \text{ V} \qquad (14.3 \text{ V if } 1.3 \Omega \text{ is used})$		
2(c)	To prevent (use of a cable with) resistance that is too large (Accept answers that refer to maintaining or not exceeding a resistance of about 1.3Ω)	(1)	
	Meaning more energy / power / p.d. available for the shredder	(1)	2
	Total for Question		9

Question	Answer		Mark
Number			
3(a)	Use of $W = VIt$	(1)	
	$W = 69\ 000\ (J)$	(1)	
	Use of efficiency = (useful energy / total energy) (x 100%)	(1)	
	Efficiency = 0.42 (or 42%)	(1)	
	Or		
	Use of $P = IV$	(1)	
	Use of $P = W/t$ (to calculate rate of increase of internal energy of water)	(1)	
	Use of efficiency = (output power / input power) (x 100%)	(1)	
	Efficiency = 0.42 (or 42%)	(1)	4
	Example of calculation		
	$W = 5.0 \text{ A} \times 230 \text{ V} \times 60 \text{ s} = 69\ 000 \text{ J}$		
	Efficiency = 29 000 J / 69 000 J		
	= 0.42		
3(b)	Human body contains water molecules		
	Or body has same structure as food	(1)	
		()	
	So cells/tissues would gain internal energy	(1)	2
	(Accept cells/tissues would be heated)	()	
3(c) (i)	Waves spread out	(1)	
	After passing through a gap Or after passing around an obstacle	(1)	2
		(-)	_
3(c)(ii)	Use of $c = f\lambda$ with $c = 3.0 \times 10^8$ m s ⁻¹	(1)	
	$\lambda = 0.12 \text{ m}$	(1)	2
		(-)	_
	Example of calculation		
	$\lambda = 3.0 \times 10^8 \text{ m s}^{-1} \div 2.5 \times 10^9 \text{ Hz}$		
	$\lambda = 0.12 \text{ m}$		
3(c)(iii)	Diameter = 2mm	(1)	1
		(1)	-
*3(c)(iv)	(QWC – Work must be clear and organised in a logical manner using technical		
0(0)(11)	wording where appropriate)		
	wording where uppropriate)		
	Diffraction greatest when wavelength is about the same as gap size	(1)	
	Diffuction groutest when wavelength is about the same as gap size	(1)	
	Diameter of holes much greater than wavelength of light and diameter of holes		
	less than microwave wavelength	(1)	
		(1)	
	so no/little diffraction of light takes place		
	Or so microwave radiation still diffracted through large angle but intensity is		
	very small.	(1)	3
	MP3 must follow on from relevant part of MP2	(1)	5
			14
	Total for Question		14

Question Number	Answer		Mark
4	(high resistance) so very little /negligible/zero current in the voltmeter Or because otherwise a current would pass through the voltmeter Or so the total resistance of the parallel combination isn't changed Or because otherwise total resistance of parallel combination would be reduced	(1)	
	because that would change /increase the current in the ammeter Or because that would mean the current through the ammeter was different to (larger than) the current through the component	(1)	2
	Total for question		2

Question	Answer		Mark
Number			
5(a)(i)	Use of $P = IV$	(1)	
	Power = 2900 W	(1)	2
	Example of calculation		
	Power = $12.5 \text{ A} \times 230 \text{ V} = 2875 \text{ W}$		
5(a)(ii)	P = E/t	(1)	
	Energy = $400\ 000\ J\ (ecf\ from\ (i))$	(1)	2
	Example of calculation		
	$Energy = 2875 \text{ W} \times 140 \text{ s} = 402 500 \text{ J}$		
5(a)(iii)	Use of efficiency = useful energy output / total energy input	(1)	
	= 0.87 or 87% (ecf from (ii)) (do not award if > 100%)	(1)	2
	Example of calculation		
	Efficiency = $351\ 000\ \text{J} / 402\ 500\ \text{J} = 0.87\ \text{or}\ 87\%$		
5(b)	Some energy transferred by heating the kettle / element / wires /		
	surroundings		
	Or Some energy transferred as sound	(1)	
	So not all of the (input) energy is transferred to (heating) the water		
	Or so useful energy output is less than energy input		
	Or only the energy heating the water is useful		
		(1)	2
	Total for question		8

Question Number	Answer		Mark
6(a)	Series sketch with two bulbs	(1)	
	Connected in series:		
	because when one is removed there is a break in the circuit		
	Or		
	because when one is removed there is no current		
	Or so the bulbs could have different p.d.s	(1)	
		(-)	
	Not connected in parallel because:		
	if one removed, still complete circuit (for the other) Or		
	if one removed, still current (through the other)		
	Or		
	full mains voltage would have blown small bulb	(1)	3
6(b) (i)	Use of $P = IV$	(1)	
	I = 0.17 (A) (at least 2 sf required)	(1)	2
	Example of calculation		
	$\frac{1}{40 \text{ W}} = I \times 230 \text{ V}$		
	<i>I</i> = 0.17 A	(4)	
6(b) (ii)	Use of appropriate equation $R = 1300 \Omega$	(1) (1)	2
(11)	A 1500 \$2	(1)	-
	Example of calculation		
	$\frac{P = V^2 / R}{40 \text{ W} = (230 \text{ V})^2 / R}$		
	A0 W = (230 V) / R $R = 1323 \Omega$		
6(b)	Use of $R = V/I$	(1)	
(iii)	$R = 13 \Omega$	(1)	2
	Example of calculation		
	R = 2.5 V / 0.2 A		
	$R = 12.5 \Omega$		
6(c)	Current – both require about the same (not just both have 0.2 A)	(1)	
	Detential difference total (required) = d is very class to mains survey		
	Potential difference – total (required) p.d. is very close to mains supply Or		
	(operating) p.d. for mains bulb much greater than (operating) p.d. for torch bulb	(1)	2

6(d)	Lower resistance	(1)	
	(smaller current, so) lower temperature (so less vibration of lattice ions) Or (smaller current, so) smaller drift velocity	(1)	
	fewer collisions of electrons with lattice ions Or less frequent collisions of electrons with lattice ions	(1)	
	Less energy dissipation (as heat) Or less ke lost in collisions	(1)	4
	Total for question		15

Question Number	Answer		Mark
7 (a)	Use of $P = VI$	(1)	
	Current = 0.021 A	(1)	2
	Example of calculation		
	$I = \frac{P}{V} = \frac{4.8}{230} = 0.021 \text{ A}$		
7 (b)(i)	Use of $P = VI$ to justify (numbers or symbols)	(1)	1
	Examples		
	$\overline{P = VI}$, so W = V A		
	Or $V = JC^{-1}$, $A = C s^{-1}$ so $V A = J C^{-1} x C s^{-1} = J s^{-1} = W$		
	Or $5 \text{ V} \times 0.1 \text{ A} = 0.5 \text{ W}$	(1)	
7 (b)(ii)	$Efficiency = \frac{0.5}{4.8} (\times 100)$	(1) (1)	2
	Efficiency = 10% or 0.1	(1)	2
	Example of calculation		
	$\overline{\text{Efficiency} = \frac{0.5}{4.8} \times 100}$		
	Efficiency = 10.42%		
7 (b)(iii)	Energy/power converted/wasted/transferred/lost to thermal or heat		
	(energy)		
	Or		
	Energy/power lost due to resistance	(1)	1
	(allow internal resistance)		
	Total for question		6